Os_muldif.rr for Risa/asir a Library for Computing (ordinary/partial) Differential Operators

نویسنده

  • Toshio Oshima
چکیده

1. muldo(p1,p2,[x,∂x]|lim=n) または muldo(p1,p2,x|lim=n) muldo(p1,p2,[[x1,∂x1],[x2,∂x2],. . .]|lim=n) :: 有理函数(初等函数でもよい)係数の常(または偏)微分作用素(の行列)の積 (⇐ [∂x, x] = 1) 2. muledo(p1,p2,[x,∂x]) または muledo(p1,p2,x) :: Euler型常微分作用素(の行列)の積 (⇐ [∂x, x] = x) 3. transpdo(p,[[x1,∂x1],[x2,∂x2],. . .],[[y1,∂y1],[y2,∂y2],. . .]|ex=1) :: 微分作用素の変換(xi 7→ yi = yi(x), ∂xj 7→ ∂yj = cj(x) + ∑ ν ajν(x) ∂xν) 4. translpdo(p,[[x1,∂x1],[x2,∂x2],. . .],mat) :: 微分作用素の線形座標変換(xi 7→ ∑ j(mat)ijxj) 5. appldo(p,r,[x,∂x]) または appldo(p,r,[[x1,∂x1],[x2,∂x2],. . .]) :: 微分作用素(の行列)の有理式や初等函数(の行列)への作用の計算 6. adj(p,[x,∂x]) または adj(p,[[x1,∂x1],[x2,∂x2],. . .]) :: 微分作用素(の行列) pの formal adjoint 7. sftpexp(p,[x,∂x],q,r) または sftpexp(p,[[x1,∂x1],. . .],q,r]) :: 微分作用素 p を q−r ◦ p ◦ q と変換する 8. appledo(p,r,[x,∂x]) :: Euler型常微分作用素の有理式への作用の計算 9. divdo(p1,p2,[x,∂x]|rev=1) :: 常微分作用素の割り算 10. mygcd(p1,p2,[x, ∂x ]|rev=1) または mygcd(p1,p2,[x]|rev=1) mygcd(p1,p2,x), mygcd(p1,p2,0) :: 常微分作用素(または xの多項式,または正整数)p1 と p2 の GCD 11. mylcm(p1,p2,[x, ∂x ]|rev=1) または mylcm(p1,p2,[x]|rev=1) mylcm(p1,p2,x), mylcm(p1,p2,0) :: 常微分作用素(または xの多項式,または正整数)p1 と p2 の LCM 12. m1div(m,n,[x, ∂x ]) または m1div(m,n,[x]) または m1div(m,n,x) :: 常微分作用素(or xの多項式)の正方行列mと有理式(or xを含まない有理式)の正方行列 nに対 し,m = R[1](∂x −n) +R[0] (or m = R[1](x− n) +R[0]) となるリスト R = [R[0], R[1]]を返す. R[0]は微分(or x)を含まない. 13. qdo(p1,p2,[x, ∂x ]) :: 常微分方程式 p1u = 0 に対し q1p2u = 0となる微分作用素 q1 と q2p2u = uとなる微分作用素 q2 の リスト [q1, q2]を返す 14. mdivisor(m,[x,∂]|trans=1,step=1) mdivisor(m,x|trans=1,step=1), mdivisor(m,0|trans=1,step=1) :: 有理函数係数 1変数多項式/常微分作用素や整数の行列の単因子を得る 15. sqrtdo(p,[x, ∂x ]) ? :: x 7→ 1/xで(xのべき倍を除いて)不変な微分作用素 pに対する変数変換 x 7→ y = x+ √ x2 − 1 16. toeul(p,[x, ∂x ],n) :: 確定特異点型常微分作用素を x = n で Euler型に変換

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

A Computer Algebra System: Risa/Asir

Risa/Asir consists of the Risa engine for performing operations on mathematical objects and an interpreter for programs written in the Asir user language. In Risa/Asir, polynomials are represented in two different internal forms: the recursive representation and the distributed representation. Polynomial factorization and GCD are based on the former representation, and computations related to t...

متن کامل

Solution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs

Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...

متن کامل

Real Quadratic Quantifier Elimination in Risa/Asir

Weispfenning has shown how to use test term methods for quantifier elimination in linear and quadratic first-order formulas over real closed fields. This paper describes the state of the implementation of such methods in the computer algebra system Risa/Asir. The package described here is entirely written in the C programming language. We point on possible extensions of the package and give exa...

متن کامل

Calculation system for the dual graph of resolution of the algebraic curve singularities using Risa/Asir

In this paper, we introduce a method of generating the dual graph of the minimal normal resolution of the algebraic curve singularities. Using factorization of polynomials over algebraic extension field, we can calculate the dual graph from the coefficients of the given polynomial exactly. The computing process includes no approximation. We constructed the system to generate the dual graph on R...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014